Minggu, 10 Maret 2019

ukuran variasi

  
UKURAN VARIASI (DISPERSI)
 Dispersi atau variasi atau keragaman data adalah ukuran penyebaran suatu kelompok data terhadap pusat data.
a.      Range
Range merupakan selisih antara nilai data terbesar dengan data terkecil dari sekelompok data.
            Rumusannya adalah R = Nilai maksimal – Nilai minimal
b.      Simpangan rata-rata
Simpangan Rata-Rata (Sr) : Yang dimaksud dengan simpangan (deviation) adalah selisih antara nilai pengamatan ke-i dengan nilai rata-rata, atau antara xi dengan X (X Rata-Rata) Penjumlahan daripada simpangan-simpangan dalam pengamatan kemudian dibagi dengan jumlah pengamatan, n, disebut dengan simpangan rata-rata.

Dalam setiap nilai Xi akan mempunyai simpangan sebesar xi - X. Karena nilai xi bervariasi di atas dan di bawah nilai rata-ratanya maka jika nilai simpangan tersebut dijumlahkan akan sama dengan “nol”. Untuk dapat menghitung rata-rata dari simpangan tersebut maka nilai yang diambil adalah nilai “absolut” dari simpangan itu sendiri, artinya tidak menghiraukan apakah nilai simpangan tersebut positif (+) atau negatif (-).an rata-rata.
c.       Variansi (variance)
Variansi (variance) adalah rata-rata kuadrat selisih atau kuadrat simpangan dari semua nilai data terhadap rata-rata hitung. Varians untuk sampel dilambangkan dengan S2. Sedangkan untuk populasi dilambangkan dengan toh kuadrat .
d.      Simpangan Baku (Standard Deviation)
Standar deviasi (standard deviation) adalah akar pangkat dua dari variansi. Standar deviasi seringkali disebut sebagai simpangan baku.
e.      Jangkauan Kuartil
Jangkauan Kuartil atau simpangan kuartil adalah setengah dari selisih antara kuartil atas (Q3) dengan kuartil bawah (Q1). Dengan rumus :
            JK=1/2 (Q3-Q1)
f.       Jangkauan Persentil      
Jangkauan Persentil adalah selisih antara persentil ke-90 dengan persentil ke-10. Dengan rumus :
JP (10-90) = P90-P10


Data sekunder          
Sample data sekunder yang kami ambil yaitu jumlah penduduk kota Bogor tahun 2006 yang dikelompokan berdasarkan pembagian kecamatan dan berdasarkan jenis kelamin.
Sampel datanya ada sebagai berikut :

JUMLAH PENDUDUK KOTA BOGOR PER KECAMATAN
MENURUT JENIS KELAMIN TAHUN 2006


Kecamatan
Laki-Laki
Perempuan
Jumlah
Bogor Selatan
77.254
73.881
151.135
Bogor Timur
38.307
38.958
77.265
Bogor Utara
64.148
61.710
125.858
Bogor Barat
86.496
84.148
170.644
Bogor Tengah
60.235
60.235
120.470
Tanah Sareal
83.257
49.236
132.493
Jumlah
409.427
368.168
777.865

Data Yang Sudah Dikelompokan :

JUMLAH PENDUDUK
(Dalam Ratusan)
f
Fkum
Mi
FiMi
µ
Mi - µ
(Mi  µ)2
F(Mi - µ)2
38,5 – 47,5
2
43
2
64
26,25
16,75
280,57
561,14
48,5 – 57,5
1
53
3
53
26,25
26,75
715,57
715,57
58,5 – 67,5
4
63
7
252
26,25
36,75
1350,57
5402,28
68,5 – 77,5
2
73
9
146
26,25
46,75
2185,57
4371,14
78,5 – 87,5
3
83
12
249
26,25
56,75
3220,57
9661,71
Jumlah
12
315
12
20711,84



Ø  Mean X = FiMi
                              ∑Fi
                           = 315
                              12
                           = 26,25                                                                                 

Ø  Median = tbmed + (n/2 – Fk) . c
                                                   f
                        = 57,55 + (6 – 7) . 10
                                              4
                        = 57,55 + (-10)
                                           4
                        = 57,55 + (-2,5)
                        = 55,05



Ø  Modus = tbmod +    d1   . c
       d2 + d1
                        = 57,55 +   3      . 10
                                        3 + 2
                        = 57,55 + 30
                                          5
                        = 57,55 + 6
                        = 63,55


Ø  Kuartil
           
            Kuartil dari data di atas :

Q1        = 1(12)     = 12    = 3
      4            4 
            Q1        = tbQ + (1.n/4 - ∑fkum) . c
                                               fQ
                        = 67,55 + (3 – 7) . 10
                                             2
                        = 67,55 + (-40)
                                           2
                        = 67,55 + (-20)
                        = 47,55





Q3        = 3(12) = 36     = 9
      4        4
            Q3        = tbQ + (1.n/4 - ∑fkum) . c
                                               fQ
                        = 87,55 + (9 – 12) . 10
                                             3
                        = 87,55 + (-30)
                                            3
                        = 87,55 + (-10)
                        = 77,55

Ø  Desil

            Desil dari data di atas :

iN          =   12   =  1,2
                       10              10



Ø  Persentil

            Persentil dari data di atas :

 iN        =  12    =  0,12
                   100         100



Ø  Simpangan rata-rata (Mean Deviation)

            Simpangan rata-rata dari data di atas :

SR        =  1  ∑f   x  x
                       n
                        = 183,75
                             12
                        = 15,31

Ø  Simpangan (Varian)

Varian dari data di atas :

S2         =    1   ∑f(X – Mi)2
                   n – 1
= 20711,84
         11
= 1882,90


Ø  Simpangan Baku

            Simpangan Baku dari data di atas :

S          = √S2
      = √1882,90
                   =43,39


Ø  Jangkauan Kuartil

Jangkauan Kuartil dari data di atas :

JK         = ½(Q3 – Q1)
= ½(77,55 – 47,55)
= ½(30)
= 15









Ø  Jangkauan Persentil

Jangkauan Persentil dari data di atas :

P90                                       =  90 x 12   = 10,8
      100

P10                                       = 10 x 12    = 1,2

      100
JP90-10                  = P90 – P10
= 10,8 – 1,2
= 9,6



kemiringan dan keruncingan

 Kemiringan Distribusi Data  Merupakan derajat atau ukuran dari ketidaksimetrisan (Asimetri) suatu distribusi data.   Kemiringan distr...